3.92 \(\int \frac {(d+e x^2)^2 (a+b \text {csch}^{-1}(c x))}{x^6} \, dx\)

Optimal. Leaf size=189 \[ -\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+\frac {b c d^2 \sqrt {-c^2 x^2-1}}{25 x^4 \sqrt {-c^2 x^2}}-\frac {2 b c d \sqrt {-c^2 x^2-1} \left (6 c^2 d-25 e\right )}{225 x^2 \sqrt {-c^2 x^2}}+\frac {b c \sqrt {-c^2 x^2-1} \left (24 c^4 d^2-100 c^2 d e+225 e^2\right )}{225 \sqrt {-c^2 x^2}} \]

[Out]

-1/5*d^2*(a+b*arccsch(c*x))/x^5-2/3*d*e*(a+b*arccsch(c*x))/x^3-e^2*(a+b*arccsch(c*x))/x+1/225*b*c*(24*c^4*d^2-
100*c^2*d*e+225*e^2)*(-c^2*x^2-1)^(1/2)/(-c^2*x^2)^(1/2)+1/25*b*c*d^2*(-c^2*x^2-1)^(1/2)/x^4/(-c^2*x^2)^(1/2)-
2/225*b*c*d*(6*c^2*d-25*e)*(-c^2*x^2-1)^(1/2)/x^2/(-c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {270, 6302, 12, 1265, 453, 264} \[ -\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+\frac {b c \sqrt {-c^2 x^2-1} \left (24 c^4 d^2-100 c^2 d e+225 e^2\right )}{225 \sqrt {-c^2 x^2}}+\frac {b c d^2 \sqrt {-c^2 x^2-1}}{25 x^4 \sqrt {-c^2 x^2}}-\frac {2 b c d \sqrt {-c^2 x^2-1} \left (6 c^2 d-25 e\right )}{225 x^2 \sqrt {-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)^2*(a + b*ArcCsch[c*x]))/x^6,x]

[Out]

(b*c*(24*c^4*d^2 - 100*c^2*d*e + 225*e^2)*Sqrt[-1 - c^2*x^2])/(225*Sqrt[-(c^2*x^2)]) + (b*c*d^2*Sqrt[-1 - c^2*
x^2])/(25*x^4*Sqrt[-(c^2*x^2)]) - (2*b*c*d*(6*c^2*d - 25*e)*Sqrt[-1 - c^2*x^2])/(225*x^2*Sqrt[-(c^2*x^2)]) - (
d^2*(a + b*ArcCsch[c*x]))/(5*x^5) - (2*d*e*(a + b*ArcCsch[c*x]))/(3*x^3) - (e^2*(a + b*ArcCsch[c*x]))/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 1265

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + b*x^2 + c*x^4)^p, f*x,
 x]}, Simp[(R*(f*x)^(m + 1)*(d + e*x^2)^(q + 1))/(d*f*(m + 1)), x] + Dist[1/(d*f^2*(m + 1)), Int[(f*x)^(m + 2)
*(d + e*x^2)^q*ExpandToSum[(d*f*(m + 1)*Qx)/x - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q},
 x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[m, -1]

Rule 6302

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsch[c*x], u, x] - Dist[(b*c*x)/Sqrt[-(c^2*x^2)], Int[Simp
lifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&
!(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]))
 || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x^6} \, dx &=-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}-\frac {(b c x) \int \frac {-3 d^2-10 d e x^2-15 e^2 x^4}{15 x^6 \sqrt {-1-c^2 x^2}} \, dx}{\sqrt {-c^2 x^2}}\\ &=-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}-\frac {(b c x) \int \frac {-3 d^2-10 d e x^2-15 e^2 x^4}{x^6 \sqrt {-1-c^2 x^2}} \, dx}{15 \sqrt {-c^2 x^2}}\\ &=\frac {b c d^2 \sqrt {-1-c^2 x^2}}{25 x^4 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}-\frac {(b c x) \int \frac {2 d \left (6 c^2 d-25 e\right )-75 e^2 x^2}{x^4 \sqrt {-1-c^2 x^2}} \, dx}{75 \sqrt {-c^2 x^2}}\\ &=\frac {b c d^2 \sqrt {-1-c^2 x^2}}{25 x^4 \sqrt {-c^2 x^2}}-\frac {2 b c d \left (6 c^2 d-25 e\right ) \sqrt {-1-c^2 x^2}}{225 x^2 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}-\frac {\left (b c \left (-24 c^4 d^2+100 c^2 d e-225 e^2\right ) x\right ) \int \frac {1}{x^2 \sqrt {-1-c^2 x^2}} \, dx}{225 \sqrt {-c^2 x^2}}\\ &=\frac {b c \left (24 c^4 d^2-100 c^2 d e+225 e^2\right ) \sqrt {-1-c^2 x^2}}{225 \sqrt {-c^2 x^2}}+\frac {b c d^2 \sqrt {-1-c^2 x^2}}{25 x^4 \sqrt {-c^2 x^2}}-\frac {2 b c d \left (6 c^2 d-25 e\right ) \sqrt {-1-c^2 x^2}}{225 x^2 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{5 x^5}-\frac {2 d e \left (a+b \text {csch}^{-1}(c x)\right )}{3 x^3}-\frac {e^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 126, normalized size = 0.67 \[ \frac {-15 a \left (3 d^2+10 d e x^2+15 e^2 x^4\right )+b c x \sqrt {\frac {1}{c^2 x^2}+1} \left (-50 d e x^2 \left (2 c^2 x^2-1\right )+3 d^2 \left (8 c^4 x^4-4 c^2 x^2+3\right )+225 e^2 x^4\right )-15 b \text {csch}^{-1}(c x) \left (3 d^2+10 d e x^2+15 e^2 x^4\right )}{225 x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x^2)^2*(a + b*ArcCsch[c*x]))/x^6,x]

[Out]

(-15*a*(3*d^2 + 10*d*e*x^2 + 15*e^2*x^4) + b*c*Sqrt[1 + 1/(c^2*x^2)]*x*(225*e^2*x^4 - 50*d*e*x^2*(-1 + 2*c^2*x
^2) + 3*d^2*(3 - 4*c^2*x^2 + 8*c^4*x^4)) - 15*b*(3*d^2 + 10*d*e*x^2 + 15*e^2*x^4)*ArcCsch[c*x])/(225*x^5)

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 165, normalized size = 0.87 \[ -\frac {225 \, a e^{2} x^{4} + 150 \, a d e x^{2} + 45 \, a d^{2} + 15 \, {\left (15 \, b e^{2} x^{4} + 10 \, b d e x^{2} + 3 \, b d^{2}\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right ) - {\left ({\left (24 \, b c^{5} d^{2} - 100 \, b c^{3} d e + 225 \, b c e^{2}\right )} x^{5} + 9 \, b c d^{2} x - 2 \, {\left (6 \, b c^{3} d^{2} - 25 \, b c d e\right )} x^{3}\right )} \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}}}{225 \, x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^6,x, algorithm="fricas")

[Out]

-1/225*(225*a*e^2*x^4 + 150*a*d*e*x^2 + 45*a*d^2 + 15*(15*b*e^2*x^4 + 10*b*d*e*x^2 + 3*b*d^2)*log((c*x*sqrt((c
^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) - ((24*b*c^5*d^2 - 100*b*c^3*d*e + 225*b*c*e^2)*x^5 + 9*b*c*d^2*x - 2*(6*b*
c^3*d^2 - 25*b*c*d*e)*x^3)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))/x^5

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{2} {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )}}{x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^6,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2*(b*arccsch(c*x) + a)/x^6, x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 191, normalized size = 1.01 \[ c^{5} \left (\frac {a \left (-\frac {e^{2}}{c x}-\frac {2 d e}{3 c \,x^{3}}-\frac {d^{2}}{5 c \,x^{5}}\right )}{c^{4}}+\frac {b \left (-\frac {\mathrm {arccsch}\left (c x \right ) e^{2}}{c x}-\frac {2 \,\mathrm {arccsch}\left (c x \right ) d e}{3 c \,x^{3}}-\frac {\mathrm {arccsch}\left (c x \right ) d^{2}}{5 c \,x^{5}}+\frac {\left (c^{2} x^{2}+1\right ) \left (24 c^{8} d^{2} x^{4}-100 c^{6} d e \,x^{4}-12 c^{6} d^{2} x^{2}+225 c^{4} e^{2} x^{4}+50 c^{4} d e \,x^{2}+9 d^{2} c^{4}\right )}{225 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, c^{6} x^{6}}\right )}{c^{4}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2*(a+b*arccsch(c*x))/x^6,x)

[Out]

c^5*(a/c^4*(-e^2/c/x-2/3/c*d*e/x^3-1/5*d^2/c/x^5)+b/c^4*(-arccsch(c*x)*e^2/c/x-2/3*arccsch(c*x)/c*d*e/x^3-1/5*
arccsch(c*x)*d^2/c/x^5+1/225*(c^2*x^2+1)*(24*c^8*d^2*x^4-100*c^6*d*e*x^4-12*c^6*d^2*x^2+225*c^4*e^2*x^4+50*c^4
*d*e*x^2+9*c^4*d^2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/c^6/x^6))

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 175, normalized size = 0.93 \[ {\left (c \sqrt {\frac {1}{c^{2} x^{2}} + 1} - \frac {\operatorname {arcsch}\left (c x\right )}{x}\right )} b e^{2} + \frac {1}{75} \, b d^{2} {\left (\frac {3 \, c^{6} {\left (\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {5}{2}} - 10 \, c^{6} {\left (\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} + 15 \, c^{6} \sqrt {\frac {1}{c^{2} x^{2}} + 1}}{c} - \frac {15 \, \operatorname {arcsch}\left (c x\right )}{x^{5}}\right )} + \frac {2}{9} \, b d e {\left (\frac {c^{4} {\left (\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} - 3 \, c^{4} \sqrt {\frac {1}{c^{2} x^{2}} + 1}}{c} - \frac {3 \, \operatorname {arcsch}\left (c x\right )}{x^{3}}\right )} - \frac {a e^{2}}{x} - \frac {2 \, a d e}{3 \, x^{3}} - \frac {a d^{2}}{5 \, x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^6,x, algorithm="maxima")

[Out]

(c*sqrt(1/(c^2*x^2) + 1) - arccsch(c*x)/x)*b*e^2 + 1/75*b*d^2*((3*c^6*(1/(c^2*x^2) + 1)^(5/2) - 10*c^6*(1/(c^2
*x^2) + 1)^(3/2) + 15*c^6*sqrt(1/(c^2*x^2) + 1))/c - 15*arccsch(c*x)/x^5) + 2/9*b*d*e*((c^4*(1/(c^2*x^2) + 1)^
(3/2) - 3*c^4*sqrt(1/(c^2*x^2) + 1))/c - 3*arccsch(c*x)/x^3) - a*e^2/x - 2/3*a*d*e/x^3 - 1/5*a*d^2/x^5

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e\,x^2+d\right )}^2\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{x^6} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^2*(a + b*asinh(1/(c*x))))/x^6,x)

[Out]

int(((d + e*x^2)^2*(a + b*asinh(1/(c*x))))/x^6, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acsch}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{2}}{x^{6}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2*(a+b*acsch(c*x))/x**6,x)

[Out]

Integral((a + b*acsch(c*x))*(d + e*x**2)**2/x**6, x)

________________________________________________________________________________________